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Vacuum structure in the SU(N) Coulomb and Landau gauges is studied by using the methods of 
harmonic maps. A systematic way for solving the Gribov vacuum copy equation N presented and 
many examples are discussed in both the Coulomb and Landau gauges as applications of the 
method. Finally, the physical interpretation of Gribov ambiguities is shortly reviewed from a 
topological point of view. 

1. Introduction 

In this ar t ic le  I p r e sen t  a sys t emat i c  m e t h o d  of solving the G r i b o v  vacuum copy 

equa t ion  in the  S U ( N )  C o u l o m b  and L a n d a u  gauges  and discuss some  p r o p e r t i e s  of 

the  a l lowed  field conf igura t ions .  

T h e  p r o b l e m  of G r i b o v  ambigu i t i e s  goes  back  to 1977 when G r i b o v  [1, 2] 

o b s e r v e d  tha t  the  C o u l o m b  gauge-f ix ing  cond i t ion  does  not  un ique ly  fix the  gauge  

bu t  al lows some  r ema in ing  gauge  f r e e d o m .  A f t e r  G r i b o v ' s  obse rva t ion  an extens ive  

l i t e ra tu re  has g rown on the  sub jec t  but  so far  an accep tab le  physical  i n t e rp re t a t i on  

has  not  been  given.  M a n y  conf igura t ions  a t t a inab l e  in the  vacuum sec tor  a re  known 

[1 -11] ;  the  a p p r o a c h  has been  in t e rms  of some  more  or  less successful  ansii tze and  

no p r o f o u n d  re la t ionsh ips  b e t w e e n  di f ferent  ansMze have been  found.  

M a t h e m a t i c a l l y  the  vacuum sec to r  so lu t ions  of the  gauge  copy  equa t ion  are  

h a r m o n i c  maps  b e t w e e n  the man i fo lds  R k and  S U ( N )  [9], and  in the  p re sen t  ar t ic le  I 

will use this obse rva t i on  to deve lop  a sys temat ic  m e t h o d  for  solving the guage  copy 

equa t ion  in the  vacuum sector .  This  m e t h o d  is based  on finding cer ta in  h a r m o n i c  

t race  maps  be tween  some  subman i fo lds  of R k and S U ( N ) ,  and  so lu t ions  to the 

or ig inal  equa t ion  are  found  by immers ing  these  t race  maps .  The  use of t race  maps  is 

m o t i v a t e d  by  the p r e sen t  s ta te  of the  t heo ry  of h a r m o n i c  maps ;  the re  are  p rac t ica l ly  

no resul ts  to be  app l i ed  in the  p r o b l e m  of h a r m o n i c  maps  f rom a n o n - c o m p a c t  

man i fo ld  to a c o m p a c t  one .  But  by using h a r m o n i c  t race  maps  def ined  on c ompa c t  

man i fo lds  one  can app ly  the  resul ts  in the  t heo ry  of h a r m o n i c  maps  to the  p re sen t  
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problem. However ,  the lack of any reasonable classification and the divergence of 

the energy functional makes  it very difficult to find global results. Thus, uniqueness 
and existence results concerning physically reasonable configurations have not yet 

been found. 
The contents of this article is the following. In sect. 2 the notation is presented and 

some general results and propert ies  of the gauge fixing are discussed. In sect. 3 the 
method of immersion is presented and the rest of this article describes its use: in sect. 
4. SU(2) vacuum structure is discussed and in sect. 5. I present some propert ies of the 
general SU(N)  gauge group and as applications work out some cases in the SU(3) 
gauge group. In sect. 6. I review some physical interpretations. 

2. The Gribov ambiguity 

In order to set the stage and to fix the conventions recall the euclidean pure gauge 
field theory defined by the lagrangian 

1]L-~a l~,a 

where F~v, the field strength tensor, is given by 

a a - -  i ,  a b c a  b , ,  c 
F"~v = O ~ A ~ - o v ~  ± g] - ~ .  

The fabC's are the structure constants of the invariant vector fields on the group 
manifold SU(N).  At  the identity e • SU(N)  I choose as basis for the s u(N) Lie 
algebra a set of N 2 -  1 traceless hermitian matrices T", a = 1 . . . . .  N 2 -  1 satisfying 
the Cartan inner product  relation 

Tr { T ~ T  b} = 2 6  ab . 

The normalization chosen means that for SU(2) the T a's are the Pauli matrices and 
for SU(3) they are the Ge l l -Mann  matrices. The vacuum sector of the theory is 
defined by the identical vanishing of the field strength tensor F ~ ,  which is equivalent 
to saying that the Lie algebra valued gauge field A ,  has the form 

T" i (0.w)w 1 (1) A~, =A:T= -g 

Here  w, the gauge transform matrix, is a map from the euclidean space R k to the 
gauge group SU(N)  represented by a unitary matrix. 

Gribov discovered the following ambiguity in the Coulomb gauge formulation of 
the SU(N)  gauge theory: the Coulomb gauge-fixing condition 

OiAi  = 0 (2) 

does not uniquely fix the gauge but in a chosen gauge-field orbit there are several 
gauge-field configurations satisfying the condition (2). This lack of uniqueness gives 
the familiar technical problems in the quantization of the theory, and one might think 
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to circumvent these difficulties by using a gauge-fixing condition that does not allow 
ambiguities. In fact, there are at least two gauge-fixing conditions that avoid the 
Gribov ambiguities [12, 13]. These gauge-fixing conditions, however, have their own 
difficulties like selecting out preferred directions and breaking down translational 
invariance. Moreover ,  they are cumbersome to use in practical calculations and the 
compactification of the spatial part  of four-space is not allowed. Indeed, the Gribov 
ambiguity seems to be more  than just a technical problem: it is always present  in a 
compactified space [14, 15] implying that the quantized free gauge theory cannot be 
formulated in terms of N 2 - 1  interacting gluons only. This means that in a 
compactified space the spectrum of states does not contain free gluon states, which 
can be interpreted as color confinement. This approach has so far not been put in a 

satisfactory form and the possible confining effects of Gribov ambiguities have not 
been declared [16]. However ,  intensive work has been pursued in formulating in all 
continuous gauges, using the degeneracy, a similar vacuum structure which we have 
in the temporal  and axial gauges. This idea was introduced by Wadia and Yoneya 
[17] and the approach seems to be very promising, at least in the Coulomb gauge: the 
BPST instanton, truly a gauge-invariant  object,  tunnels between the two Gribov 
vacua in the Coulomb gauge [18], and, allowing discontinuities in the time evolution 
of the gauge fields, there seems to be a rich tunneling picture [19-21]. Introduction of 
meron like configurations seems to restore the symmetry  of the vacuum and brings 
the theory to the confining phase, along the ideas of the confinement mechanism by 
Callan, Dashen and Gross [22, 23]. So far this program has not been completed.  This 
is partly due to the inadequate knowledge of the possible vacuum configurations 
attainable in the Coulomb gauge, and the purpose of this article is to develop a 
systematic method for searching for the relevant configurations in the Coulomb and 

Landau gauges. 
Let us now investigate the Coulomb and Landau gauge-field configurations in the 

vacuum sector. The mathematical  propert ies of these gauges will turn out to be 
almost identical and so I will adopt  the following convention: in the Coulomb gauge 
the greek summation index will run over  the values 1, 2, 3 and in the Landau gauge 
the allowed values will be 1, 2, 3, 4. Most of the analysis can also be applied to the 
classical theory of the principal chiral model [24] in the euclidean two-space R 2, and 
to include this theory into the formalism I will assume that the greek summation 
index can also be attached to the values 1, 2 only. In what follows it should always be 
clear which of the dimensionalities are allowed. 

In the vacuum sector the divergence condition O,A, = 0 can be put into the form 

t~20) q'- (f~txW " 0~0) 1)O) = 0 ,  (3) 

which can be shown to be the Euler-Lagrange equation for the energy functional [1] 

E(to) = 1 IR Tr {0,to "O~,to-1}dkx.  (4) 
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The extremals of the energy functional are customarily called harmonic maps, and 

for further analysis of the energy functional see [9] and the references therein. 
The energy functional (4) can be interpreted as a definition of a chiral field theory 

of interacting pion fields, where the fields are the matrix elements of the gauge 
transform matrix 0). The energy-momentum stress tensor T~.. of the chiral theory is 

Tr{O,0)a,0) }+Tr{a,0)O,0) } - ~  Tr{a~0)O~0)-l}, r,.v = -1 1 

and it is conserved, O . T . ~  = O, as a consequence of the equations of motion. By 

introducing local coordinates {0)i} on the group manifold SU(N) and defining gik to 
be the metric tensor on SU(N) the energy-momentum stress tensor T.~ can be given 

the local form 

00)  i 00 )  k 00 )  i OCt) k 

T.~  = 2gik a x .  Ox. 8~.vgik Ox~ Ox~ " 

In the principal chiral model the properties of the energy-momentum stress tensor 

can be used to find new information of the classical solutions: by requiring finiteness 

of the energy functional (4) one gets the equations [25] 

c70) i c30) k 00) i 00) k c70) i 00) k 
g ik  g i k  l - -  , g i k  - -  1 - - 0 .  

Ox Ox Oy Oy Ox Oy 

Mathematically these equations say that the classical solutions are conformal maps, 

so they will preserve the angles. 
In two dimensions the energy functional (4) is invariant under conformal trans- 

forms of the domain [26]. The conformal equivalence R 2 w {oe} = S 2 can be used for 

finite-energy solutions to formulate the theory on the sphere S2. This means that 

these classical solutions are harmonic maps from the sphere S 2 to the gauge group 

SU(N). Now, supposing that o)1 and w2 both solve the Euler-Lagrange equation (3), 
the condition for the product wlw2 to be a solution can be expressed as a commutator  
relation: 

[0)~ .0.0)1, 0.0)2.0)21]. (5) 

If one splits R 4 = U 2 X U 2, one notices that the solutions of the principal chiral model 

give solutions to this commutator  relation provided that the two solutions 0)t and 0)2 
live in different R 2 subspaces. Hence the solutions of the principal chiral model give 

vacuum copies in the Coulomb and Landau gauges. 

Let us now look at the more general boundary conditions at infinity. In the WBC 
[27] case, 

lim 0)(r, .(2) = 0)o(-0). (6) 
r~OO 

• k 1 0)0 is a we l l -de f ined  map from the euchdean  sphere  S ~  at infinity to the gauge group 
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SU(N).  By taking the limit r ~ oo in the Euler -Lagrange  equation (3) one gets 

LZto0 ---- ( 0 T O ) 0 0 T O )  O 1 )(.t) 0 . (7) 

Here  L 2 is the Laplace-Bel t rami  opera tor  on S k-1 and 8T is the transverse part  of the 
gradient. Eq. (7) says that w0 is a harmonic map from the sphere S k 1 to the gauge 

S~ these harmonic maps are the closed geodesics on the group SU(N).  In the case of 1 
manifold SU(N).  In the S 3 case we have the non-trivial homotopy  structure 

H3[SU(N)] -=- Z ,  (8) 

and thus it might be interesting to know the homotopy  classes of the allowed maps 

O)o. The result is that these ~Oo'S all belong to the trivial homotopy  class in the 
classification (8). This can be seen as follows: the vacuum sector is defined by the 
identical vanishing of the field strength tensor F.~ which implies that the topological 

charge, defined by 
2 

_ g f ~ . . . .  v - 647r 2 e,~t~v8 J R 4  a Xl~ctB-I~y6 

must vanish. 
By changing this integral to a surface integral, one gets 

v = ~ do-,e,~¢~, Tr {wS~o) -1 • toOow-I . toOvo)-l}. (9) 
--~0o 

By substituting the asymptotic map w0 in this integral and noticing that expression (9) 
gives the Brouwer  degree of the map w0, S 3 ~ SU(N),  one finds that v vanishes and 

therefore too belongs to the trivial homotopy  class. 
In the case of the SBC boundary condition [27] corresponding to the one-point  

compactification of the euclidean k-space Rku{oo}-~S k, one can use the real 
analyticity of the solutions which allows one to perform a Laurent  expansion in 

powers of 1 / r  at large distances: 

to(r, g2)= ~ o)~(.O) (10) 
r t = 0  

In this expansion w0 is always non-vanishing. Supposing that the first non-trivial term 
in the powers of 1 / r  is to, (/2) • ( l / r ) "  and by substituting the Laurent  expansion (10) 
into the Euler-Lagrange equation (3) and collecting terms of equal powers in 1 / r  one 

gets the equation 

L2ton = n (n - k + 2)w,,  

which means that the elements of the matrix w, are harmonic polynomials of a 
common degree. But the eigenvalues of the Laplace-Beltrami operator  L 2 o n  the 
sphere S k-1 are of the form j ( j + k - 2 )  and by substituting n = j + k - 2  one 
concludes that in the principal chiral model,  corresponding to k = 2, and in the 
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Coulomb gauge, k = 3, all integer values n t> 1 are allowed. But in the Landau gauge, 
k = 4, n must be larger than 2. Recalling that the expansion (10) is a stationary point 
of the energy functional (4) one observes, after power  counting, that the energy 
functional must be finite. If one scales x .  ~ Ax. in the energy functional one gets 

and stationarity of the energy functional under field variations about  oJ implies that 

(k - 2 )E (o )  = 0 .  

Thus, only in the principal chiral model,  corresponding to k = 2, is there any hope of 
finding non-trivial solutions compatible with the one-point  compactification. These 
maps can be classified for example by the integer n of the asymptotic behaviour 
(1/r)". 

3. A strategy for solving the Gribov equation 

The Euler-Lagrange equation (3) is a second order quasilinear elliptic system of 
partial differential equations. At present there is no systematic method of solving 
such equations, nor is there any existence theorem to apply in the present problem. 
(The existence and uniqueness theorems for the harmonic maps are known only in 
relatively few cases, and to the best of the author 's  knowledge, there are no results for 
harmonic maps f rom a non-compact  manifold to a compact  one which can be applied 
in the present  problem.) In the lack of general results one is led to use various direct 
approaches.  Unfor tunate ly  the most powerful methods,  based on the propert ies of 
the per turbed energy functional [26] such as lower semicontinuity in suitable 
function spaces, are difficult to apply in at tempting to solve the Gribov problem. This 
is a consequence of the divergence of the energy functional for critical maps in 
dimensions higher than two. This means that if one at tempts to use the propert ies  of 
the energy functional, one must first perform vacuum energy renormalizations. In 

the present  problem this is a cumbersome approach and the ideas are obscured by 
mathematical  peculiarities. Further,  the power of this method is obvious only if 
one has some acceptable classification method of the allowed and physically 
interesting configurations at hand. With the lack of a suitable classification one is led 
to try finding methods that will yield interesting results by direct, albeit less strict, 
procedures.  

The method that I will use is based on the splitting of the Euler-Lagrange equation 
(3) into simpler parts. After  the subproblems have been solved one can construct 
harmonic maps from R k to SU(N)  and in this way obtain solutions to the original 
problem. The idea in the splitting used is the following: select some compact  or 
non-compact  submanifold M of R k. Every harmonic map o~ from R k to SU(N)  
induces a map from this submanifold M of R k into some submanifold N of SU(N).  
The method is based on the construction of the trace map o3: M ~  N of ~o on the 

submanifold M, and after the trace map 03 has been constructed, its immersion into 
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the manifold R k provides a solution to the problem by giving the original map ~o. The 
choice of the submanifold M c R k is largely determined by the symmetry and 

long-distance behaviour one wants for the allowed field configurations, and the 
reasonable candidates for the submanifolds N c SU(N)  are the closed Lie subgroups 
of the group SU(N) or the r iemannian symmetric spaces, which are of the form 
S U ( N ) / H ,  with H a closed Lie subgroup of SU(N).  In practice the trace maps 
03 : M--> N are constructed by embedding harmonic maps fi, defined on the manifold 
M, into the manifold N. But I do not expect the harmonicity here to be an essential 
limitation if one wants the allowed field configurations to be compactifiable [compare 
eq. (7)]. The technical reason for limiting to such harmonic trace maps is that the 
immersion will be simple. Moreover ,  there might be important  hints for studying 
non-linear ~r-models on compact  manifolds. The use of trace maps also provides a 
useful way of classifying the immersed maps: suppose that the manifold M is 
compact,  as it often is if one assumes the WBC boundary condition (6). Then one can 

perform a homotopy  classification for the trace maps o ) : M ~  N-~ H or S U ( N ) / H ,  
and the classification of the immersed maps can be given by using the homotopy  
classification of the trace maps 03. The existence and uniqueness problem for 
harmonic maps between compact  r iemannian manifolds has been studied extensively 
[26] and in many cases one can give a complete  classification of the harmonic maps. 

4. Examples in the SU(2) gauge group 

The group manifold SU(2) is homeomorphic  to the euclidean sphere S 3. The 
condition that a map r~ : M c R k ~ S k' is harmonic yields the equation 

02r~ + (0,,t~ • 0,,t~)r~ = o .  (11)  

This equation says that the laplacian of the vector t~ is parallel to the vector t~ itself, 
and the coefficient of proport ionali ty is the energy density O~,r~ • O~,t~. This is a general 
result: if we have the equation 

02r7 +fr~ = 0 ,  (12) 

with f some function on R k, one can find non-trivial solutions if and only if f is the 
energy density 0,~ • 0,r~. This can be seen by multiplying eq. (12) by ~ and solving for 
[. Thus eq. (i 1) is the most general equation with 02r~ and t~ parallel. 

The homeomorph i sm SU(2) - S 3 suggests the use of spherical parametr izat ion on 
the manifold SU(2). It is well known that the euclidean space R 4 admits two spherical 
coordinate systems [28, 29]: the normal system is given by 

x = r sin 01 sin 02 sin d~, 

y = r sin O1 sin 02 cos 05, 

z = r sin O1 COS 0 2 , 
(13)  

t = r c o s  O1, 
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and the b iha rmonic  system is defined by 

x = r sin 0 sin ~b12, 

y = r sin 0 cos ~b~2, 
(14) 

z = r cos 0 sin $34,  

t = r cos 0 c o s  ( ~ 3 4  • 

In order  to keep  the resulting equat ions  tractable I will make  use of bo th  of these 

systems - the restrictions in t roduced in the simplified equat ions  based on one system 

are avoided in the o ther  system. 
In the normal  system (13) it is convenient  to parametr ize  the gauge t ransform 

matrix to by 

to = exp { i a ~  • dr}, 

where  t$ • g = 1. Substi tut ing this into the Eu le r -Lagrange  equat ion (3) one  gets the 

equat ions  

02c~ = ½ sin 2 a 0 , ~  • a~,~, (15) 

sin a [02/~ 7 t" (O~/~  ' O ~ / ~ ) / ~  ] + 2 COS a O~,a " O~,~ = 0 .  (16) 

Eqs. (15), (16) are useful especially if one  tries to get solutions with the sub- 
manifold  N of SU(2) being S 2 -  SU(2) /U(1)  or  SU(2) itself; assuming the or tho-  

gonali ty relat ion 

O~c~O.r~ = 0 ,  (17) 

eqs. (15), (16) simplify to 

02a = i sin 2a0,,r~ • a~,8, (18) 

02~ + (a,,8 • 0,r~)r~ -- 0 .  (19) 

Eq.  (19) says that  the trace map r~ : M c R k --~ S 2 or  S 1 is harmonic.  

To  enable  the analysis of harmonic  maps  to : R k -~ SU(2) wi thout  the restrictive 

assumption (17) I will give the equat ions  based on the b iharmonic  system (14). In this 
case it is convenient  to use the parametr iza t ion  

o3 = sin a ~ l  + c o s  ar~2, 

where  the subsidiary condit ions 

~I " r~1 = ~2 " ~2 = 1 , /~I " /~2 = O, 

for the two-vec to r  trace maps  ~1 and ~2 are assumed. The condit ion that  o3 is a 
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harmonic map yields the equations 

sin a02~1 + 2 cos oL0.a0.gl +cos  aaZar~l 

+ sin 3 a O~t~ 1 • O,./~ 1/~ 1 -Jr sin a COS 2 Or' a/.J~ 2 " 0p./~2/~ 1 = 0 ,  (20) 

cos a 02~2 - 2 sin a Ova G, n2 - sin a a2aJq2 

q'- COS 30¢0~/~2  " C3g/~Et~2-1- COS O¢ sin E Ot0~t~ 1 " 3tx/~l/~ 2 = 0 .  (21) 

In order to keep the immersion simple I will here assume the orthogonality 
conditions 

O.aa.r71 = 0 ,  O.aO.~E = 0 .  

These equations imply that the trace maps r~l and r~2 are parallel to their laplacians 
aE~ and 02r~2, respectively, and we know that this implies that the trace maps ~1 and 
r~2 are harmonic maps. In the present  case they are harmonic maps from the 
submanifold M c R k to the circle S 1, so that the submanifold N of the gauge group 
SU(2) will be the r iemannian symmetric space SU(2)/U(1)  or the gauge group SU(2) 
itself. Eqs. (20) and (21) now simplify to 

aEa = ½ s in  2 a E a . ~  • a . a l  - a.r~2 • o . r / 2 ] ,  ( 2 2 )  

a21ql + (a.r~l • a.r/1)r~l = 0 ,  (23) 

02?~2 q- (19~/~ E " 0tx/~2)/'~ 2 = 0 .  (24) 

These equations should be compared  with the eqs. (18) and (19). 
I will now discuss some examples for the equations presented. First I will discuss 

vacuum copies arising f rom the normal system equations (18) and (19). 
The first case to be analyzed corresponds to harmonic trace maps r7 f rom some 

submanifold M of R k to the circle S 1. The circle S 1 will be embedded  as a sphere 
S 2= SU(2)/U(1)  to the gauge group SU(2). The vacuum copies arising from this 

splitting have the interesting proper ty  that the topological flux [4], 

1 It q(to) = ~ 2  eiikeabc OiOl sin E otr laojnbOkn c d3x, (25) 
= t o 

vanishes for them. This can be seen directly from eq. (25). Thus all solutions in this 
family correspond to the topological state characterized by the trivial configuration 

A . ~ 0 .  
Assume that the trace map r~ in eq. (19) sends some submanifold M c  R k to the 

circle S 1. This can be adjusted by choosing r~ to be rsin:]. 
t~ = A [cos 

t_ 0 



A .  Niemi  / Vacuum structure 535 

w h e r e / t  is a cons tan t  o r thogona l  mat r ix  and & is now a real va lued funct ion on the 
mani fo ld  M c R k. T h e  t race m a p  r~ is ha rmon ic  if the funct ion ~ is a ha rmon ic  
funct ion on R k, 

02~ = 0 .  

The  or thogona l i ty  condi t ion (17) now gets the fo rm 

a~a O~b = O, 

and if one  wants  the immers ion  in te rms  of an o rd inary  differential  equa t ion  for  a,  
one  mus t  requi re  that  0,~b0~,& depends  only on the same  var iable  as a.  Solutions are 
easily found  and I will p resen t  one.  T h e  solut ion has previous ly  been  p re sen ted  in ref. 
[5]: a s sume  that  & is given by 

4' (x, y, z, t) = tot, 

which gives a,~bO~,~b = to2. If a now depends  on u, 

to(ax + b y  +cz)  
h i =  

x /a2+b2+c 2 ' 

is p rov ided  by solut ions to the equa t ion  of the ma themat i ca l  the immers ion  
pendu lum,  

61 = ½ sin 2 a .  (26) 

This  equa t ion  can be solved in t e rms  of elliptic funct ions  and the solut ion cor-  
responding  to the oscil lation f rom the uns table  posi t ion of equi l ibr ium,  a (t = -oo)  = 
0 + nzr to the uns table  posi t ion of equi l ibr ium,  a (t = + ~ )  = 0 + (n + 1)zr, is given by 

a(u)  = +2  arctan [exp {42u + c}).  

The  o the r  interest ing r i emann ian  symmet r i c  space  N of the gauge group  SU(2) is 
the mani fo ld  SU(2) itself. This  case arises by e m b e d d i n g  the t race maps  ~ : M c R k + 
52 ~-- CP  1, and has been  s tudied comprehens ive ly  in the l i terature.  I will first give the 
equat ions  for  a ha rmon ic  m a p  ~ : M + S 2, 

[- sin Z sin ~" 

~ = [ c o s  h sin sr[. 

k cos ~" -J 

H e r e  A and ~" are real  va lued  funct ions on M. T h e  harmonic i ty  condi t ion (11) gives 

t~2~. = 1 sin 2~'0~.h 0 , h .  0~. (sin 2 sr0~.h ) = 0 .  

Solut ions to these  equa t ions  are easily found:  for  example  choosing M = R 2 and 
requir ing finiteness of the energy  funct ional  (4) the conformal  invar iance  of the 
energy  funct ional  can be used and the mos t  genera l  solut ion is given by the CP 1 
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multi-instanton and multi-anti-instanton solutions (see for example ref. [25]). On the 
Riemann sphere these solutions are given by the map z ~ z k and the maps complex 
conjugate to this. The integer k is the Brouwer degree of the map and equals the 
instanton number. The identity map z ~ z  corresponding to the one-instanton 
solution can be presented by a harmonic polynomial map by mapping R 2 stereo- 
graphically onto the unit sphere S 2 c R 3. The result is 

[-sin & sin 0 7 

R = | cos  ~b sin 0 | .  (27) 

t_ cos 0 d 

The notation refers to the spherical system o n  R 3. The anti-instanton will yield the 
antipodal map which is given by the map (27) by changing ~b ~ - &  I will now prove 
that the identity and antipodal maps are the only non-trivial harmonic maps S 2 ~ S 2 
that can be immersed consistently with condition (17). Note that according to eq. (7) 
every trace map is asymptotically a harmonic map between spheres. For this purpose 
I will stereographically project  the C P  1 multi-instanton solutions onto the unit 
sphere S 2. The resulting map is given by [30] 

1 ± k  ['sin k~b sin {2 arctan [c(tan ~0) ]}7 

R - - / cos  k4~ sin {2 arctan [c(tan 10)±g]} / , (28) 
1 ± k  [_ cos {2 arctan [c(tan ~0) ]} _J 

where k is the instanton (or anti-instanton) number and c > 0 is a parameter.  From 
this result it can be seen that the vectors R, OR/30 and 3d/O& are mutually orthogonal. 
The orthogonality condition (17) can be expressed in the form 

0o~ OR 1 Oa OR 

00 00 sin20 0& 0d~ 

But, by the linear independence of the vectors Od/O0 and OR/Oda this is possible if and 
only if 

3a act 
- - 0 ,  

ao o6 

which means that the immersion function a cannot depend on the angles 0 and d~- 
The energy density for the CP a multi-instanton solutions has the form 

1 8k2c 2 sin ±2k ½O cos ±zk 10 
0,,r~ " = --  (29) • G,n r 2 sin 2 0[cos ±2k ½/9 + c 2 sin ±2k ½0] 2, 

which is independent  of the angles 0, ~b if and only if k = + 1, c = 1 or k = 0, c > 0 
corresponding to the identity, antipodal and trivial maps, respectively. Substituting 
the energy density (29) into the immersion equation (18) and noticing that a cannot 
depend on the angles 0 and ~b one gets the desired uniqueness result for the Gribov 
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solution. The interesting feature of this result is that in the homotopy classes of the 
identity and antipodal maps there is a continuous family of harmonic maps, 
parametrized by the number c > 0. But only if c = 1, can the trace maps be immersed. 

In the Landau gauge, choosing the manifold M c R 4 to be the sphere S 3, the trace 
map ~ in eq. (19) will be a harmonic map $3~ S 2. The homotopy structure of these 
maps is isomorphic to the additive group of integers and the existence problem for 
harmonic maps in these homotopy classes has been given a partial answer [31]: the 
Hopf fibration $3-* S 2 generates the homotopy structure and in the biharmonic 
representation it has the form [7] 

= (~b12 + ~b34) sin 20-] r~ I2i°n (~12 + ~b34) sin 20~ " c O s  20 

This is a harmonic polynomial map. By joining the Hopf fibration and the CP 1 
multi-instanton solution one gets harmonic maps $3~ S 2 in the homotopy classes 
with Hopf  invariant of the form +k 2. The existence problem for harmonic maps in 
the other homotopy classes is not solved; however, it seems that the Hopf fibration 
and the corresponding antipodal map are the only harmonic polynomial maps in this 
case. The existence problem for the immersion equation (18) has been given an 
affirmative answer in the case of harmonic homogeneous polynomial maps [7], and 
for non-homogeneous polynomial harmonic maps one can perform a non-existence 
analysis similar to that in the Coulomb gauge. 

The example to be presented next arises from the biharmonic system equations 
and thus avoids the orthogonality condition (17). The solution will satisfy the Landau 
gauge-fixing condition. 

Let  us choose the submanifold M c R 4 to be the torus T 2= S l x S  1 and the 
submanifold N to be the group SU(2) itself. This is achieved by the trace maps 

I sin (kl~b12 +/1~34) 1 
(~i) =/c°S(kl~b124-/l~34) / 

/ sin (k2~lZ+/2~b34)/' (30) 

L COS (k2~12 4-/2~b34) J 

where the notation refers to the biharmonic system (14) with pl = r sin 0 and 
p2 = r cos 0. The immersion of the trace maps are given by solutions of the equation 

k2 2kl +12p z) Oza 10ee Oza 1 Oa 1 /  2 2 - - l l  
002 + - -  - - +  T--~+-- + -  [ sin 2a = 0 (3"1) Pl ~Pl OD2 D2 0pZ 2 \ Pl 2 , 

where I have assumed that the immersion function a depends on the variables 01 and 
pz only. Real analyticity at the origin will limit the allowed values of 2 2 k z - k l  and 
l 2 - 112 so that ~ and ~ are integers. Moreover,  the inequality k z 2 < k 12 is 
possible if and only if 122 is smaller than l~. In the following I restrict the analysis to the 
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case k22 < k 2 as the other cases can be analyzed similarly. In order to get eq. (31) to a 

simpler form I assume that the immersion function a depends only on the variable 

t=x/k l~-  z lnpl+X/ l l~-  21np2, 

which, upon substituting into eq. (31), will give the equation of the mathematical  
pendulum, 

6~ -- ~ sin 2 a ,  

already found in our earlier analysis, eq. (26). The solution presented is, however, in 
general a weak solution (a solution in the sense of distributions) due to the "angular  
singularity" at the origin, and in order to get classical solutions we set k2 = 12 = 0. By 
substituting t = In (pl/p2) into eq. (31) one arrives at a family of solutions similar to 
that presented in ref. [8]. However ,  f rom the preceding analysis it should be clear that 
these solutions are solutions only in the weak sense, and the field strength tensor will 
be a distribution with a support  concentrated at the origin: in particular, these maps 
will not yield vacuum copies on R 4 but o n  R 4 -  {0}. 

5. Examples in the SU(3) gauge group 

In the SU(N)  case one can always choose some SU(2) subgroup of the gauge group 
SU(N)  and in this way the solutions of the SU(2) gauge group provide solutions in the 
general SU(N)  gauge group as well. But from the physical and mathematical  point of 
view it is of interest to study the new features introduced when N is larger than two. 

The parametrizat ion of the general SU(N)  gauge group element cannot be given 
such a simple form as in the case of SU(2). Thus the immersion of the submanifold 
M c R k will, in general, be extremely complicated, and some kind of strategy is 
needed. For this purpose I will briefly present  the relevant substructures of the gauge 
group SU(N)  [32]. The first substructures that come to mind are the closed Lie 
subgroups H of the gauge group SU(N).  The less trivial substructures of interest in 
the present  problem are the r iemannian symmetric spaces S, which are of the form 
S = S U ( N ) / H .  The riemannian symmetric space S can be embedded into the gauge 
group manifold SU(N)  as a closed, totally geodesic submanifold, and the invariant 
vector field su(N) on the manifold SU(N)  can be decomposed into a vertical 
subspace h_, which is isomorphic to the Lie algebra of the subgroup H, and its 

orthogonal  complement  s, 

s_uu(N) = h + s .  

The Killing form on su(N) and its restriction to s defines a unique SU(N)  invariant 
r iemannian structure on the manifolds SU(N)  and S, respectively, and the restriction 
of the exponential  map to the vector field s is locally homeomorphic  to the 
r iemannian symmetric space S. The relevant commuta tor  relations of the vector 
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fields h and s are 

[h, h]  ~ h ,  [h, _s] ~ s_, [_s, s_] ~ h_. 

When N >/3, it is in general very difficult to find explicit harmonic maps from R k t o  

SU(N),  and all explicit constructions [10, 11] have been based on constructing 
harmonic maps from R k to some subgroup or riemannian symmetric space of the 
gauge group SU(N): the harmonic trace maps are embedded into the tangent spaces 
h_ or s, and, by immersing these trace maps into R k, v a c u u m  copies have been found. 
Harmonic maps into the submanifolds of SU(N) can be constructed easier by 
utilizing the properties of the submanifolds, and in searching for vacuum copies with 
some desired spatial symmetry the use of Euler-Lagrange equations can be avoided 
by applying the general principle by Coleman and Faddeev [33, 34]. In the present 
case the argumentation proceeds roughly as follows: in looking for harmonic maps 
invariant under some spatial symmetry group G one must only make the energy 
functional (4) stationary for the most general field configuration invariant under G as 
the energy functional is automatically stationary under asymmetric variations, as a 
consequence of Schur's lemma. Utilizing the subgroups or riemannian symmetric 
spaces embedded into the group manifold SU(N) as closed, totally geodesic sub- 
manifolds, further simplification can be obtained by restricting the symmetric field 
configuration to be varied so that it has values only in the chosen submanifold N of 
SU(N). In this way the resulting stationary field configuration will be a harmonic map 
from R k to N c SU(N) automatically solving the Euler-Lagrange equation (3). By 
choosing the submanifold N suitably the variation of the general configuration 
invariant under the spatial symmetry group G will be relatively simple and the 
existence of solutions to the immersion equation can be proved directly. 

Before presenting explicit solutions in the SU(3) case, I will mention some 
solutions available in related fields of study. 

The use of subgroups or riemannian symmetric spaces (or some other totally 
geodesic spaces) of the gauge group SU(N) will prove useful by recalling the 
commutator  equation (5). For example, the riemannian symmetric space CP N-'  can 
be embedded into the group manifold SU(N), CP N-I = SU(N)/SU(N- 1), and by 
multiplying two CP N-'  multi-instanton solutions [35, 36] living in the different R 2 
parts of R 4, vacuum copies satisfying the Landau gauge-fixing condition will arise. Of 
course a CP N 2 multi-instanton solution, taking values for example in the subgroup 
S U ( N -  1) can be chosen as the other partner. There are also many other non-linear 
o'-models, solutions of which can be used in this context: for example the O(2N) 
solutions [37] can be chosen in connection with the riemannian symmetric spaces 
S 2N-1 ~-SU(N)/SU(N-1). All the finite-action solutions of the 2-dimensional 
non-linear o'-models live in the compact space R 2 w {o0} - S 2 and so the correspond- 
ing vacuum copies will live in the compact space $2× S 2. And by noticing that the 
energy functional is invariant under conformal transforms of the domain in two 
dimensions, the construction of solutions to the commutator  equation (5) can be 
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reduced to the problem of constructing harmonic maps between the compact  
manifolds S 2 and SU(N).  By expressing the Euler -Lagrange  equation (3) in local 
coordinates on the manifolds R k and SU(N) it will take the form 

~,xi Oxi 

Here  A is the laplacian on R k and the F~ r ' s  are the Christoffel symbols on SU(N).  :In 
the case of R 1 this equation reduces to the equation of geodetic lines on SU(N),  and 
by splitting R k = R 1 x .  • • x R a and multiplying k geodesics living in the different R 1 

parts, solutions to the commuta tor  equation (5) can be constructed. Naturally, mixed 
solutions of the type R l x  . . .  x R Z x  . . .  x R  k can also be presented. In fact, the 
solution presented in ref. [6] is actually a solution arising from the splitting R 1 x R 2 
with the R 2 part  represented by the CP 1 instanton solution. 

I will not carry on this formal discussion of the general gauge group SU(N) further, 
but show how the ideas for constructing explicit copies will work in the case of SU(3) 
by giving two examples.  In order to find useful substructures I will first review some 

well-known propert ies  of the group SU(3). 
An SU(2) subgroup of SU(3) can be constructed by using the Gel l -Mann matrices 

AI, A2, h3. One can also use the m a t r i c e s  A4, As, 1A3+lx/3A8 or the matrices .~6, 

h7, -½ha +½x/3A8 to form an SU(2) subgroup. These subgroups can be enlarged by 
noticing.for example that As commutes  with the matrices A1, h2, A3. This set of four 
Ge l l -Mann  matrices generates the subgroup SU(2) × U(1). A new subgroup can be 
constructed for example from the SO(3) generators A2, A5, h7. These and other 
subgroups can be used in constructing riemannian symmetric spaces. For example,  
the complex projective space C P  2 is given as the coset space SU(3)/SU(2) × U(1), the 
sphere S 5 can be given as the symmetric  space SU(3)/SU(2) and the subgroup SO(3) 

will yield the unitary symmetric  space SU(3)/SO(3).  
As the first example I construct harmonic maps from R 3 and R 4 to the geodesic 

sphere S 5 = SU(3)/SU(2) embedded  in the manifold SU(3). The method presented 

is, however,  by no means restricted to the sphere SU(3)/SU(2) but can also be 
applied in the general case of S 2N-1 -~ S U ( N ) / S U ( N -  1). 

The parametr izat ion of S 5 is most conveniently given by some spherical coordinate 
system in R 6 where I have now embedded  the manifold S 5 ~- SU(3)/SU(2) as a unit 
sphere. There  are six spherical systems in R 6 [ 2 8 ,  29] and all of them can be used 
succesfully in constructing harmonic maps. As an example of the construction 
method I will employ the normal system, and the harmonic map o3 : M c R k -~ 85 c R 6 

is parametr ized as follows: 

o3 = (sin a~, cos o~). 

Here  r~ is a harmonic trace map into $ 4 c  S 5 and a is the immersion function. 
Immers ion of the trace map will yield eq. (18). I will limit the handling to the 
polynomial  trace maps r~ : S k-~ c R k --~ S 4 c S 5, which suggests that solutions to the 
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immers ion  equa t ion  cannot  be  found  unless a depends  on the radial  var iable  r only. 

In the case of R 3 cor respond ing  to the C o u l o m b  gauge,  the unique [38] ha rmon ic  
po lynomia l  m a p  r~ : s Z ~  S 4 which cannot  be  in te rp re ted  as a m a p  to some  lower  

d imens iona l  sphere  in S 4 is given by 

c o s  2 0 - 1 

½x/3 sin ~b sin 20 

r~ = ½x/3 cos 4~ sin 20 

tx/3 sin 2& sin 2 0 

1 - -  ~x/3 cos 2~b sin 2 0_ 

By subst i tut ing t = In r into the immers ion  equat ion ,  one  gets the Gr ibov  pendu lum 
equa t ion  [1, 2] in the fo rm 

+c~ = 3 sin 2 a ,  

which concludes  the construct ion.  
In the L a n d a u  gauge one  can use the me thods  p re sen ted  in ref. [7] in construct ing 

the t race maps  and the  ha rmon ic  po lynomia l  t race m a p  r~ : S 3 -~ S 4 can be  t aken  to be, 

for  example ,  

- 1  • 
sin (~b12+th34) sin 20-  

1 
cos (4~12 + ~b34) sin 20 

sin (4~12- d,34) sin 20 

1 
cos (~b12- ~b34) sin 20 

cos 20 

The  nota t ion  refers  to the b iha rmon ic  sys tem (14). By subst i tut ing t = 2 In r into the 
immers ion  equa t ion  we get the Gr ibov  p e n d u l u m  equat ion  

6~ + & = sin 2 a .  

A n o t h e r  choice of ha rmon ic  t race  maps  would  be 

-3 cos 2 20 - ½ 

½x/3 sin ((~12-t- ~34) sin 40 

/~ = ½ ~ / 3 C O S  ( ( ~ 1 2 " t - ( ~ 3 4 )  sin 40 

½45 sin (2~b12 + 2q~34) sin 2 20 

l x /3  COS (2~b12 -I- 2~b34) sin 2 20 
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and by substituting t = 2 In r the immersion equation will yield the Gribov pendulum 
equation 

c7 + & = 3 sin 2 a .  

The maps constructed are harmonic maps f rom the euclidean space R k to the sphere 
S 5 which can be realized as a totally geodesic space in the gauge group manifold 
SU(3). Thus, the maps constructed will give vacuum copies in the SU(3) gauge group. 

The next example is an application of the general principle of Coleman and 
Faddeev in the Coulomb gauge. The subgroup G of the full symmetry group is chosen 
to be the group of simultaneous rotations in the spaces R 3 and SU(3), i.e., rotations 
generated by £ + T where £ is the three-dimensional  angular momen tum and T is 
the generator  of rotations in the configuration space. The harmonic maps O3 : R 3 
SU(3) that we are seeking for can thus be characterized by the commuta tor  relation 

EL+ f, O3]= O. 

The most general map o3 invariant under the combined SO(3)x  SO(3) action of a 
rotation in the base space R 3 and a global similarity transform in the configuration 
space SU(3) is of the form 

o3ik = a (r)&ik + b (r)t~ik + C (r)6ik , 

where a, b and c are some complex valued functions of the radial variable r and the 
matrices ~b, tO are defined by 

= nin - % = , 1 

I[lik = --ieiklnl = n 1A7 - n2A5 + n3A2 • 

The unit vector ~ is the one given in eq. (27). By setting nl = 1, n2 = n3 = 0 (note that 
a, b, c are assumed to depend on the variable r only) and making use of the unitarity 
of o3 ~ SU(3) and noticing that det (o3) = 1, one gets the equations 

(~a + c)(~8 + ( ) =  1,  

( - l a  + c )(-½a + g) + b b =  1 ,  

(-½a + c)/~+ (-]a +g)b = O, 

( - ] a  + c)2(}a + c ) - b Z ( Z a  + c ) =  1 .  

By a straightforward calculation based on these equations one can now show that the 
map o3 can be given the form 

o3 = exp (ia(r)~b) exp ( i /3(r)O),  (32) 

where a and/3 are arbitrary real valued functions depending on the radial variable r 
only. This is exactly the trial map used in ref. [10], and by substituting (32) into the 
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energy  funct ional  (4) and per forming  the variat ion one gets the Eu le r -Lagrange  

equat ions  
3 z a  2 3a  6 

¢- r - -  - - -  sin a cos/3 
Or 2 Or -- r 2 

a2 f l  2 aft  2 
- - 4 -  . . . .  sin/3 cos a .  
Or 2 r Or r 

By substi tut ing t = In r these immersion equat ions  can be put  into the Yee-Viswana-  

than fo rm 
d + 6 = 6 sin a cos /3 ,  (33) 

fi +/3 = 2 sin/3 cos a .  (34) 

If one  sets 13 = 0 the pure  SU(3) /SO(3)  immers ion solutions are found.  These 

solutions are character ized by the asymptot ic  behaviours  a ( - o 0 ) =  0, a (+o0)=  ~:1r 
(modulo  2¢r). The  pure SO(3) immers ion solutions a - = 0  have the asymptotics  
/3(-00) = 0 ,  /3(+o0)= +~-. Besides these solutions there are also mixed solutions. 

These  solutions can be analyzed by the mechanical  ana logue  of eqs. (33) and (34) 
describing a p e n d u l u m  acted on by a per iodic  force and moving  under  the influence 

of some kind of a viscous friction. A numerical  analysis of the equat ions  shows that 

there  are three  different types of solution:  first, the pendu lum starts f rom a (-o0) = 
/3(-0o) = 0 and rolls down the potent ial  surface and comes to rest at the min imum 

points o~ (+o0) = +zr,/3 (+co) = 0. These  solutions be long to the SU(3) /SO(3)  family. 

The  solutions of the SO(3) family are character ized by the asymptot ic  behaviour  
a (+co) = 0,/3 (+o0) = + 7r. A typical numerical  integrat ion of these kind of solutions is 

given in fig. 1. The  third type of solution corresponds  to separatrixes character ized by 

7 14 
t"  In(~ ) 

Fig. 1. A numerical integration of the Yee-Viswanathan system corresponding to a solution with line 
topology. 
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I 
0 7 14 

Fig. 2. A numerical integration of the Yee-Viswanathan system corresponding to a solution with plane 
topology. 

the asymptotic behaviours c~(+oo)~ +~Tr, /3(+oo)= +½7r. A numerical integration 
corresponding to this kind of a solution is presented in fig. 2. I have performed a 
thorough numerical analysis of eqs. (33) and (34) and it seems that the viscous 
friction is so large that no other solutions are possible in the present context. 

6. Discussion 

I have presented a systematic method for solving the Gribov vacuum copy 
equation in the SU(N) Coulomb and Landau gauges and given many examples of 

how the method can be used. 
Even though there now is some kind of system for solving the Gribov equation, the 

problem itself, Gribov ambiguities, has not yet been given a reasonable physical 
interpretation. The mere existence of gauge-fixing conditions that do not allow 
Gribov copies [12, 13] shows that the physical interpretation is not easy to find: the 
spatial part of the Minkowski space, R a'3, is the euclidean three-space R 3 which is 
non-compact.  In studying physical processes of real particles one can always 
eliminate the extra degrees of freedom from the classical lagrangian by choosing 
some complete, continuous gauge-fixing condition such as the Cronstr6m gauge [13], 

x " A ~ ,  = 0 . 

Thus one can argue that the Gribov ambiguities are irrelevant from the physical point 
of view. The situation is, however, drastically chanced if one is interested in the 
internal structure of hadrons: if one is viewing the hadron from inside, as a quark and 
gluon would, one must take into account the boundary conditions for the gluon fields 
on the boundary of the hadron. Mathematically this means that the function space of 
the allowed field configurations is limited and the hadron will be a Stone-Chech like 
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compactified topological space, possibly with some substructures. In the internal 

world of the hadron this means that the gluons will feel that they live in a 

compactified space. But in a suitably compactified space one cannot avoid Gribov 
ambiguities [14, 15] which means that the spectrum of states inside the hadron does 

not contain free gluon states. This means that color is confined. Note that any trial to 
avoid gauge degeneracy by choosing non-continuous gauge-fixing conditions means 

that in the quantized theory the gauge is fixed by some operator condition; and the 
gauge fixing, when operating in the Hilbert space of physical states, is ill defined for 

some states, which is not very pleasant. 
The choice of boundary conditions at infinity depends on the picture one is using. 

For example, in the magnetic string model of hadrons the quarks must have magnetic 

charges which are the sources of the flux along the string. Thus, the choice of 
boundary conditions must be consistent with the long-range behaviour of magnetic 

monopoles. At present there are several boundary conditions that have been applied 

but one has no clear way to choose the right compactification. 
At this moment  it is of interest to recall the uniqueness of the gauge fixing in an 

abelian theory like QED.  Here the gauge transform matrix is an ordinary function, 

to : e  i'~ 

with & a real valued function. The uniqueness of the Coulomb and Landau 

gauge-fixing condition says that & is a harmonic function, 

,92& = 0 .  

But the solution ~b = const., is the only harmonic function o n  R 3 o r  R 4 that is 

consistent with some compactification. Thus one can, inside the hadron, always 

exclude the extra variables from the lagrangian and the photons can be realized in the 

spectrum of states inside the hadron. But the spectrum of states is a Hilbert space 
which is a linear vector space and so the hadron can emit the photons: no confining 

effect is possible. 

The author would like to thank C. Cronstr6m for enlightening discussions and J. 
Hietarinta for advice and reading the manuscript. 
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